The compound you described, **1-[2-(diethylamino)ethyl]-1-[(7-oxo-3,6-dihydro-2H-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]-3-(2-oxolanylmethyl)thiourea**, is a complex organic molecule that likely possesses interesting biological activity. Let's break down the structure and why it might be important for research:
**Structure:**
* **Thiourea:** The core of the molecule is a thiourea, characterized by a sulfur atom connected to a carbon atom that is double-bonded to an oxygen atom. This structure often displays biological activity.
* **Substituents:**
* **Diethylaminoethyl:** A branched alkyl chain with a diethylamine group. This portion might contribute to increased lipid solubility, allowing the molecule to cross cell membranes.
* **7-oxo-3,6-dihydro-2H-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl:** This is a complex ring system derived from quinoline and dioxane. This might provide the molecule with specific binding affinity to target proteins.
* **2-oxolanylmethyl:** Another alkyl chain containing a cyclic ether (oxolane) group. This might further influence the molecule's interactions with biological targets.
**Why it might be important for research:**
* **Potential for therapeutic activity:** The combination of thiourea and diverse substituents suggests the molecule could be an effective inhibitor of enzymes, receptors, or other biological targets. This could lead to applications in the development of drugs for various diseases.
* **Pharmacological research:** Studying the molecule's activity against specific targets could reveal new insights into their mechanisms of action and potential therapeutic interventions.
* **Chemical biology:** The molecule's structure offers opportunities to explore structure-activity relationships (SAR), meaning studying how changes in the molecular structure affect its biological activity. This allows for optimization of its properties for specific therapeutic purposes.
* **Lead compound for drug discovery:** The molecule might serve as a starting point for further chemical modifications and optimization to develop more potent and selective drugs.
**Important Note:** Without specific research context or experimental data, it's impossible to definitively state the exact importance or applications of this compound. It's essential to consult relevant scientific publications or research reports for specific information about its biological activity and potential applications.
ID Source | ID |
---|---|
PubMed CID | 3176334 |
CHEMBL ID | 1351553 |
CHEBI ID | 121340 |
Synonym |
---|
MLS000706553 |
smr000272719 |
CHEBI:121340 |
AKOS000695117 |
HMS2663L22 |
MLS003909549 |
CHEMBL1351553 |
1-[2-(diethylamino)ethyl]-1-[(7-oxo-3,6-dihydro-2h-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]-3-(2-oxolanylmethyl)thiourea |
Q27209876 |
1-[2-(diethylamino)ethyl]-1-[(7-oxo-3,6-dihydro-2h-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]-3-(oxolan-2-ylmethyl)thiourea |
Class | Description |
---|---|
quinolines | A class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Putative fructose-1,6-bisphosphate aldolase | Giardia intestinalis | Potency | 7.9245 | 0.1409 | 11.1940 | 39.8107 | AID2451 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 50.1187 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 26.8545 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 5.0119 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 31.6228 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
beta-2 adrenergic receptor | Homo sapiens (human) | Potency | 8.9125 | 0.0058 | 6.0263 | 32.6427 | AID492947 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 100.0000 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 39.8107 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 35.4813 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 3.1623 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 4.4668 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |